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ABSTRACT

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in preclini-

cal models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this

effect is not fully elucidated yet. The primary objective of this study was to investigate the

hypothesis that the antimicrobial effect of MSC in vivo depends on their modulation of macro-

phage phagocytic activity which occurs through mitochondrial transfer. We established that

selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposo-

mal clodronate resulted in complete abrogation of MSC antimicrobial effect in the in vivo model

of Escherichia coli pneumonia. Furthermore, we showed that MSC administration was associ-

ated with enhanced AM phagocytosis in vivo. We showed that direct coculture of MSC with

monocyte-derived macrophages enhanced their phagocytic capacity. By fluorescent imaging and

flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages

which occurred at least partially through tunneling nanotubes (TNT)-like structures. We also

detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages

which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally,

partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted

in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on

macrophage phagocytosis in vitro and the antimicrobial effect of MSC in vivo. Collectively, this

work for the first time demonstrates that mitochondrial transfer from MSC to innate immune

cells leads to enhancement in phagocytic activity and reveals an important novel mechanism

for the antimicrobial effect of MSC in ARDS. STEM CELLS 2016; 00:000–000

SIGNIFICANCE STATEMENT

In the manuscript, we demonstrate that alveolar macrophages are critical for the bacterial
clearance effect with MSC treatment in mouse Escherichia coli pneumonia. In addition, for the
first time we report that human bone marrow derived mesenchymal stem cells (MSC) transfer
their mitochondria to macrophages both in vivo and in vitro via tunneling nanotubes (TNT) and
microvesicle secretion. This leads to enhanced macrophage phagocytosis and improved bioener-
getics. Mitochondrial donation via direct cell contact presents a novel important mechanism of
the antimicrobial effect of MSC in the conditions complicated by bacterial infections. Given
these findings, we believe that this manuscript represents a significant advancement in the
understanding of functional properties of MSC and provides additional evidence for their thera-
peutic potential in acute, inflammatory lung disease.

INTRODUCTION

Acute respiratory distress syndrome remains
the leading cause of disability and death in
critically ill patients with a mortality rate of
25–40% depending on disease severity [1].
Acute Respiratory Distress Syndrome (ARDS)
has many clinical phenotypes with the most

common causes being bacterial and viral pneu-
monia and sepsis. The main characteristic of
ARDS pathophysiology is excessive pulmonary
inflammation [2]. Resident macrophages are
key orchestrators of immune responses. Alveo-
lar macrophages (AM) are the first line of
innate immune cells in the distal respiratory
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tract responsible for detection and elimination of invading
pathogens, as well as initiation of the early host immune
response.

Mesenchymal stem (stromal) cells are self-renewing multipo-
tent adult stem cells which can be isolated from bone marrow
and many other tissues and organs [3, 4]. Under in vitro condi-
tions, they can be differentiated into multiple cell types [5].
These cells possess regenerative, immune-modulatory, and anti-
microbial properties. In recent years, MSC were proven to have
protective effects in several preclinical models of ARDS including
the ex vivo human lung perfusion model [6–14]. These results
have informed the design of clinical trials of MSC in ARDS. In two
small randomized phase I studies, plastic adherent MSC were
shown to be safe and well tolerated in patients with moderate
to severe ARDS, and a phase II clinical trial powered for efficacy
is currently ongoing [15, 16]. Successful recovery of two patients
with severe refractory ARDS has been reported after administra-
tion of MSC therapy on a compassionate basis [17].

Despite the rapid translation of preclinical models showing
beneficial effects of MSC in the injured lung into clinical trials, the
mechanisms by which these cells exert their anti-inflammatory
and restorative functions are still unclear. For rationale develop-
ment of MSC based therapy, we need better understanding of
their mechanisms of action within the injured lung.

Mechanisms by which MSC enhance microbial clearance
are of particular importance, as acute inflammatory conditions
such as ARDS are often complicated or caused by bacterial
infections. Therefore, potential therapeutic agents, while
reducing inflammation should not hinder the host’s ability to
combat infection. Remarkably, in the in vivo models of ARDS
induced by live bacteria, MSC consistently demonstrate
capacity not only to reduce inflammation but also to improve
bacterial clearance. Our group has demonstrated that the anti-
microbial effect of MSC in ARDS is partially mediated by their
secretion of antimicrobial peptides and proteins [10] and also
by the modulation of phagocytic capacity of host monocytes
[9] and AM [11]. This ability of MSC or MSC-derived microve-
sicles to enhance phagocytic capacity of host innate immune
cells has been reported by other investigators, but the mecha-
nism of this effect has not been fully elucidated [18–20].

Although many studies have demonstrated that the benefi-
cial effects of MSCs are dependent on paracrine mechanisms
including microvesicle or exosome release [10, 12, 20–23],
there is an increasing body of evidence indicating that direct
cell contact between MSC and lung epithelial or endothelial
cells, allowing mitochondrial transfer, is also important. Islam
et al. reported that mitochondrial transfer from MSC to alveo-
lar type II epithelial cells (ATII) improved survival in a Lipopoly-
saccharide (LPS)-induced pneumonia murine model through the
restoration of the ATII bioenergetics profile. Direct cell contact
through formation of Connexin 43 gap junctions between MSC
and ATII was required for mitochondrial donation [24]. Mito-
chondrial transfer from MSC to bronchial epithelial cells via
tunnelling nanotubes (TNT) was protective in in vivo models of
asthma and COPD [25, 26]. Also, mitochondrial donation from
MSC to endothelial cells through TNT was reported to be pro-
tective in an in vitro model of reperfusion injury [27]. However,
it is still unknown whether or not cell contact-dependent
mechanisms are involved in MSC mitochondrial transfer to
innate immune cells and how mitochondrial transfer would
influence their capacity to clear bacteria.

In this study, we tested the hypothesis that MSC can
transfer their mitochondria to macrophages through TNT and
that this would enhance macrophage phagocytic activity.
Some of the results of these studies have been previously
reported in the form of an abstract [28].

MATERIALS AND METHODS

See Supporting Information for detailed descriptions.

Human Bone Marrow-Derived Mesenchymal Stem

Cells (MSC)

Human bone marrow-derived MSCs were obtained from the
Texas A&M Health Science Centre College of Medicine, Insti-
tute for Regenerative Medicine (Temple, Texas, U.S.), a NIH
repository. The cells met all the criteria for the classification
as MSCs as defined by the International Society of Cellular
Therapy [29]. For inhibitor experiments using Cytochalasin B
(Sigma-Aldrich, Dorset, UK, www.sigmaaldrich.com), cells were
incubated in complete a-MEM supplemented with 1% Fetal
Calf Serum (FCS) and 500 nM of inhibitor for 1.5–2 hours 5%
CO2 and 378C. Cells were then washed three times with Dul-
becco’s phosphate buffered saline (DPBS) prior to in vitro and
in vivo studies.

Human Monocyte-Derived Macrophages (MDM)

and MSC Direct Coculture

Before each experiment, MSC were trypsinized, counted,
washed with sterile 1X DPBS, resuspended in RPMI-1640
medium 1% FCS and added to the culture of primary human
macrophages at a 1:20 MSC/MDM ratio. Cells were stimulated
with LPS (Escherichia coli O111:B4, List Biological Laboratories
(Campbell, California, www.listlabs.com) 10 ng/ml) or live E.

coli strain K1 at MOI of 10 for 4 or 24 hours. Each experiment
was performed in triplicate, using cells from at least three dif-
ferent donors of MDM from the Northern Ireland Blood
Transfusion Service (NIBTS). Buffy coats donated by the NIBTS
were used with ethical approval from the School Research
Ethics Committee of Queen’s University Belfast.

Mitochondrial Isolation and Artificial Transfer

Mitochondrial isolation from MSC was performed using the
mitochondrial isolation kit for cultured cells (Thermo Fisher
Scientific (Paisley, UK, www.thermofisher.com)) according to
manufacturer’s instructions. Isolated mitochondria were resus-
pended in RPMI 1% FCS according to the final cell count of
MSC, maintained on ice and used immediately for artificial
transfer. Transfer of isolated mitochondria to MDM in vitro

was performed according to Caicedo et al. [30].

In Vivo E. coli Pneumonia Model

Mice were anaesthetized and instilled with 3.5 3 106 CFU of
E. coli K1 in the volume of 35 ml intranasally (IN). After 4
hours mice received MSC treatment (1 3 106 cells/mouse)
either intravenously (IV) through the tail vein in 100 ml of
PBS, or intranasally in 35 ml of PBS (in case of intranasal
administration, mice received gaseous (Isoflurane) anaesthesia
for brief immobilization). Control mice were treated with the
same volumes of PBS as a vehicle control. Mice were moni-
tored and euthanized by an overdose of general anaesthesia
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24 or 48 hours after infection and broncho-alveolar lavage
fluid (BALF) samples or lungs were collected for analysis.
Route of administration did not affect MSC capacity to
decrease severity of lung injury, decrease inflammation and
improve bacterial clearance. Similar proportions of human
MSC were recovered from BALF after IN and IV administra-
tion, indicating that MSC home to airspaces when given intra-
venously (Supporting Information Fig. S1A, S1C).

Flow Cytometry

MSC were stained with 200 nM MitoTracker Deep Red
(Thermo Fisher Scientific (Paisley, UK, www.thermofisher.com)
for 45 minutes at 5% CO2 and 378C before experiments.
Mouse BALF cells or lung homogenate were stained with anti-
bodies against CD11c (PE or APC), CD11b (APC-e-Fluor780),
F4/80 (PE-Cy7), Gr-1 (e-Fluor450 or PerCP-Cy5, www.ebio
science.com) or appropriate IgG (all from eBiosciences, Hat-
field, UK) and human macrophages were stained with anti-
CD45 (PE or APC) or appropriate IgG controls (eBiosciences).
Cells were analyzed using a FACSCanto II flow cytometer and
FlowJo software (Tree Star).

AM were gated as Gr-12F4/801CD11chiCD11blow, total
lung macrophages were gated as Gr-12F4/801, lung mono-
cytes as Gr-12, CD-11b1 and neutrophils as Gr-11 [31].

Statistics

Data were tested for normality by using the D’Agostino and
Pearson Omnibus normality test, Kolmogorov-Smirnov test or
the Shapiro-Wilk test in GraphPad Prism 5. Comparisons of
parametric data were analyzed by Student’s t-test, or one-way
or two-way ANOVA for multiple groups, with post hoc analysis
using the Bonferroni method. For nonparametric data the
Mann-Whitney U test was used for two group comparisons
and Kruskal Wallis test for multiple groups with Dunn’s post
hoc correction. Statistical significance was considered when
p< .05 and all data are displayed as mean6 SD. All statistical
analysis was performed using GraphPad Prism version 5.

RESULTS

Alveolar Macrophage Depletion Abrogates the

Antimicrobial Effect of MSCs in an in vivo Model

of E. coli Pneumonia

To model ARDS, we used a mouse acute E. coli pneumonia
model, previously extensively characterized by our group [7,
10]. To investigate the importance of AM as mediators of the
effects of MSC in vivo, mice were selectively depleted of their
alveolar macrophage population by intranasal administration of
clodronate liposomes (CL) before infection (Supporting Informa-
tion Fig. S2A, S2B). We compared the effects of MSC in normal
and macrophage depleted mice after E. coli infection.

Remarkably, AM-depleted mice had twofold higher bacte-
rial CFU numbers in the BALF compared to normal mice, and
the antimicrobial effect of MSC administration was not pres-
ent, whereas it was significant in nondepleted animals (Fig.
1A). This suggests that AM are key cellular mediators of the
antimicrobial effect of MSC in this model.

The cytokine profile of the BALF was assessed by
membrane-based antibody array (R&D). In the case of normal
mice, MSC demonstrated pronounced immunomodulatory

effects (Fig. 1B). Levels of the majority of the pro-inflammatory
cytokines (MIP-1a, MIP-1b, IL-1a, IL-1b, IL-16, MIP-2, Eotaxin,
TNF-a, IL-6, KC, IL-3, IL-27, I-309, IL-7, JE, IP-10, Trem1, MCP-5,
MIG, IL-12p70, IL-17) were downregulated by MSC compared to
the PBS treated group, whereas levels of several anti-
inflammatory mediators (IL-4, IL-5, RANTES) were elevated.
Notably, IL-10 levels were reduced by MSC treatment in normal
mice as compared to PBS treated group. AM depletion resulted
in reduction of levels of major pro-inflammatory cytokines
(MIP-1a, MIP-1b, IL-1a, IL-1b, IL-16, MIP-2, Eotaxin, TNF-a, IL-6,
KC, IL-27, I-309) as compared to the nondepleted PBS treated
group, suggesting that AM are important sources of these cyto-
kines in this model. MSC treatment of AM-depleted mice was
not effective in restoring the levels of cytokines to those
observed in the normal mice, suggesting that AM are important
mediators of the immunomodulatory effect of MSC (Fig. 1C).
Results of the antibody array were validated by ELISA for TNF-a,
IL-10 and IL-6 (Fig. 1D–1F). In agreement with pro-inflammatory
cytokine data, inflammatory cell infiltration (assessed by total
white blood cell counts and absolute neutrophil counts) and
protein influx into the alveolar spaces were dramatically
reduced after AM depletion, and MSC treatment had no effect
on those parameters, whereas it significantly reduced both in
normal mice (Fig. 1G–1I). Collectively, these data highlight a key
role of AM in orchestrating the innate immune response in the
alveoli and their importance as cellular mediators of MSC thera-
peutic effects in this in vivo model.

Neutrophil Depletion did not Impair MSCs

Antimicrobial Effect in vivo

To test if the absence of the antimicrobial effect of MSC seen
with AM depletion was due to impaired neutrophil recruitment,
in separate experiments we depleted mice of neutrophils by
repeated intraperitoneal injections of anti-Ly6G Ab (1A8).

Neutrophil depletion resulted in a statistically significant
increase in bacterial growth in the BALF as compared to non-
depleted mice and this effect was partially abrogated by MSC
administration, suggesting that neutrophils are not critical for
the antimicrobial effect of MSC. (Supporting Information Fig.
S3A). Overall, similar to AM depletion, neutrophil depletion
demonstrated a trend toward reduction in severity of lung
injury (as indicated by BALF protein) and MSC were capable
of reducing it further (1.8 6 1.8 mg/ml for MSC vs 2.6 6

1.9 mg/ml for PBS) (Supporting Information Fig. S3B). Inter-
estingly, although not statistically significant, BALF levels of
TNF-alpha were almost 50% higher in neutrophil depleted
mice as compared to control animals (2.6 6 2.5 ng/ml PBS
and 1.6 6 1.6 ng/ml MSC for depleted group vs control group
with 1.5 6 1.4 ng/ml PBS and 0.75 6 0.99 ng/ml MSC) (Sup-
porting Information Fig. S3C), indirectly supporting the previ-
ous conclusion that macrophages are the main source of pro-
inflammatory cytokines in this model.

MSC Increase Phagocytosis both in Mouse Alveolar

Macrophages and Human Monocyte-Derived

Macrophages (MDM)

To further investigate the finding that macrophage depletion
resulted in abrogation of the antimicrobial effect of MSC, we
tested the effect of MSC on AM phagocytosis in vivo.

To assess phagocytic activity of AM in vivo, BALF was har-
vested 24 hours after treatment with MSC or PBS, BALF cells
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were incubated with pHRodo-conjugated E. coli particles and
analyzed by flow cytometry. The AM population was identified
as CD11chiF4/801CD11blowGr-12 cells. BALF from the MSC
treated group had a significantly larger population of phago-
cytic AM than BALF from PBS treated mice (Fig. 2A), suggest-
ing MSC treatment enhanced alveolar macrophage capacity to
engulf invading bacteria in the airway.

To extend this finding to a more clinically relevant human
scenario and to elucidate the mechanisms of this effect, we
cocultured MSC with primary human MDM in vitro. MSC and
primary human MDM were cocultured together in direct con-
tact for 4 hours. In the presence of MSC, macrophages
increased extracellular E. coli bacterial killing by 80% (p 5 .03,
n 5 4) (Fig. 2B). The reverse effect was observed in the mac-
rophage intracellular CFU counts, which were significantly

increased with MSC, suggesting enhanced phagocytosis (Fig.
2C).

MSC Transfer their Mitochondria to Macrophages

in vitro and in vivo

A number of recent publications have shown that mitochondrial
transfer from MSC to lung epithelial and endothelial cells is an
important mechanism of MSC protective effects in several ani-
mal models of lung diseases [24–27, 32]. We hypothesized that
mitochondrial transfer could be a mechanism by which MSC
facilitate macrophage phagocytosis. MSC were labeled with
200 nM MitoTracker Deep Red for mitochondrial staining. Using
immunofluorescent imaging, we observed that after 4 hours in
coculture with MSC all MDM acquire MSC mitochondria (Fig.
3A). We were also able to visualize formation of intercellular

Figure 1. Effect of alveolar macrophage (AM) depletion on MSC antimicrobial and anti-inflammatory properties in mouse E. coli pneu-
monia. (A) AM-depleted mice had significantly higher E. coli CFU counts in BALF compared to nondepleted mice treated with PBS (*,
p< .05 vs. control PBS, 2-way ANOVA (Bonferroni)). MSC administration had no effect on bacterial clearance in the AM-depleted group
although significantly reducing E. coli CFU in control mice compared to PBS controls (*, p 5 .02, Student’s t-test). (B) Cytokine profile of
BALF samples from normal mice. (C) Cytokine profile of BALF samples from AM-depleted mice. (D-F) AM-depleted mice had significantly
reduced levels of BALF TNF-a, IL-10, and IL-6 compared to nondepleted animals treated with PBS. MSC administration had no effect on
cytokine levels in AM-depleted animals (*, p< .05 vs. control PBS, 2-way ANOVA (Bonferroni)). MSC treatment significantly decreased
TNF-a and IL-10 levels in nondepleted animals (*, p 5 .02 and **, p 5 .007 respectively vs. PBS treated group, Student’s t-test). (G, H)
BALF total WBC counts and absolute neutrophil counts were significantly abrogated in the AM-depleted group. MSC administration had
no effect in AM-depleted animals, while although reducing absolute neutrophil counts in nondepleted mice (***, p< .001, *, p< .05 vs.
control PBS, 2-way ANOVA (Bonferroni)). (I) BALF protein influx was significantly decreased in the AM-depleted group versus nonde-
pleted mice treated with PBS. MSC treatment significantly reduced BALF protein concentration in nondepleted mice and had no effect
in AM-depleted animals (*, p 5 .03, Student’s t-test). All data expressed as mean6 SD for each condition (at least n 5 4 mice/condition).
Abbreviations: BALF, broncho-alveolar lavage fluid; MSC, mesenchymal stem cells; PBS, phosphate buffered saline; WBC, white blood
cells.
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cytoplasmic bridges termed tunnelling nanotubes (TNT)
between MSC and macrophages staining positively for MSC
mitochondria (Fig. 3A (arrows)), suggesting TNT as a mechanism
of transfer. To rule out potential residual leakage of MitoTracker
dye, MSC were washed three times before coculture and the
excess media was tested instead of MSC (data not shown). We
also did not observe any evidence of macrophage phagocytosis
of MSC or MDM-MSC cell fusion both by confocal and real-time
microscopy up to 24 hours in coculture, excluding the possibility
that the acquisition of MSC mitochondria by macrophages was
due to these mechanisms. These results were further corrobo-
rated by flow cytometry. Almost 100% of CD45-positive MDM
acquired MitoRed fluorescence specific for MSC mitochondria
after 4 hours in coculture (Fig. 3B–3D). Notably, MitoRed
Median Fluorescence Intensity (MFI) of MSC (CD45neg Mito-
Tracker1cells) had decreased approximately five-fold in cocul-
ture as compared to MSC on their own, indicating the loss of
fluorescence due to the transfer (Fig. 3E). Presence of a distinct
CD45negMitoRedhigh population in coculture additionally con-
firmed that MSC were not phagocytosed by MDM.

To test if mitochondrial transfer from MSC to AM could be
detected in vivo, we infected mice with E. coli as before and 4
hours later instilled MSC labeled with MitoRed IN. Twenty-four
and forty-eight hours after infection lungs were harvested and

lung homogenates analyzed by flow cytometry. Overall, at 24
hours, among the innate immune cells in the lung homogenate,
the main recipients of MSC mitochondria were macrophages
which we define as Gr-1–F4/801 cells (396 9%) as compared to
monocytes (Gr-12F4/802CD11c2CD11bhi) (76 3%) and neutro-
phils (Gr-11) (46 1%). Remarkably, 966 2% and 676 7% of
the alveolar macrophage population (Gr-12F4/801CD11chi

CD11blow) were positive for MitoRed fluorescence at 24 and 48
hours respectively (Fig. 3F) indicating effective and sustainable
mitochondrial transfer in vivo.

Mitochondrial Transfer Enhances Phagocytosis in

Mouse Alveolar Macrophages in vivo and Primary

Human Macrophages in vitro

To determine the effect of mitochondrial transfer on macro-
phage phagocytosis in vivo, mice were treated with MitoRed-
labeled MSC IN, BALF was harvested 24 hours after infection
and phagocytic activity of BALF AM was assessed using pHRodo
E. coli particles as before. Alveolar macrophages which had
acquired MSC mitochondria had a significantly higher phago-
cytic index (measured by pHRodo MFI as compared to AM
which did not have MSC mitochondria) (4,1496 507 for
MitoRed1 AM vs. 3,5286 470 for MitoRed2 AM, mean

Figure 2. MSC enhance macrophage phagocytosis. (A) In the in vivo E. coli pneumonia model, MSC treatment significantly increased
the percentage of alveolar macrophage positive for pHrodo E. coli bioparticles compared to PBS treated mice ((n 5 7 mice/condition), *,
p 5 .01, Student’s t-test). (B, C) In vitro human MDM were infected with E. coli (MOI 10) with or without direct coculture with MSC (1/
20 ratio). (B) MSC coculture significantly reduced extracellular E. coli CFU counts coupled with (C) significantly elevated levels of intracel-
lular CFU (n 5 3 in triplicate, *, p< .05, **, p< .01, Student’s t-test). Data are shown as mean 6 SD for each condition. Abbreviations:
MDM, monocyte-derived macrophage; MSC, mesenchymal stem cells; PBS, phosphate buffered saline.
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Figure 3. Mitochondrial transfer from MSC to macrophages. (A) Transfer of mitochondria from MSC to primary human macrophages
through TNT-like structures (Ai) human MDM uniformly express CD45 (blue) (Aii) MSC mitochondria are labeled with MitoRed (red)
(Aiii) In coculture with MSC for 24 hours, colocalization of blue and red, indicates robust transfer of mitochondria from MSC to MDM.
Network of mitochondria-positive TNT emerging from the MSC and connecting to several distant macrophages (up to 200 mm) is also
observed (arrows) (images were taken at a magnification of 10 3 63; scale bar5 50 mm). (B) Population of MDM cultured alone,
stained with CD45-PE but negative for MitoRed-APC. (C) Population of MSC cultured alone, stained with MitoRed-APC but negative for
CD45-PE. (D) After 4 hours in coculture, more than 90% of CD451MDM demonstrate acquisition of MitoRed fluorescence (APC1), indi-
cating extensive mitochondrial transfer from MSC. (E) Intensity of MitoRed fluorescence of MSC population decreased after coculture
with MDM (blue histogram). Data representative of at least three independent experiments. (F) E. coli-infected mice were treated with
MitoRed-labeled MSC IN, AM were gated as Gr-12F4/801CD11chiCD11blow and analyzed for their expression of MitoRed fluorescence at
24 and 48 hours after treatment. Ninety-three percent and sixty-five percent of AM were positive for MitoRed at 24 and 48 hours,
respectively. Plot representative of 3 mice/condition. Abbreviations: MDM, monocyte-derived macrophage; MSC, mesenchymal stem
cells.
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MFI6 SD, n 5 12, p 5 .003), suggesting that mitochondrial
transfer is associated with enhanced phagocytic capacity (Fig.
4A).

It has been reported previously that isolated MSC mito-
chondria are readily internalized by cancer cells, stay func-
tional within the cell after artificial transfer and play a role in
altering cancer cell bioenergetics [27]. We decided to use iso-
lated MSC mitochondria to confirm their role in macrophage
phagocytosis in vitro. MSC mitochondria were isolated and
added to human MDM culture for 24 hours before stimula-
tion with live E. coli as in previous experiments. Internaliza-
tion of isolated mitochondria by macrophages was confirmed
by flow cytometry (Fig. 4B). Addition of isolated mitochondria
to MDM resulted in a 60% decrease in the extracellular E. coli

CFU as compared to MDM alone, mimicking the effect of
MSC coculture (77% decrease in extracellular CFU) (Fig. 4C).
Consistently, addition of isolated mitochondria led to an
increase in intracellular E. coli CFU counts, similar to MSC
coculture, compared to MDM alone suggesting improved

phagocytosis (Fig. 4D). Islam et al. demonstrated that forma-
tion of gap junctions through Connexin-43 was necessary for
cell-contact-dependent mitochondrial transfer from MSC to
alveolar epithelial cells [24]. In the in vitro coculture we
observed that mitochondria are transferred to MDM through
TNT which form cell contacts with macrophages. Addition of
GAP 26, a specific inhibitor for Connexin-43 gap junction for-
mation, did not alter either formation of TNT-macrophage
contacts or the rate of mitochondrial transfer (data not
shown), ruling out involvement of Connexin-43 based gap
junctions. We later hypothesized that blocking of TNT forma-
tion in MSC would abrogate the transfer. Cytochalasin B at
nanomolar concentrations has been reported to block the for-
mation of TNT without affecting endocytosis and phagocytosis
and has been used to block TNT formation in MSC previously
[27, 33, 34]. Preincubation of MSC with 500 nM Cytochalasin
B resulted in inhibition of TNT formation and substantial
changes in cell morphology (Fig. 5A), however mitochondrial
transfer, although less intensive, was still evident (Fig. 5A, 5B).

Figure 4. Internalized by macrophages, mesenchymal stem cells (MSC) mitochondria enhance their phagocytic activity. (A) In E.
coli pneumonia MSC (MitoRed)-treated mouse BALF was harvested and phagocytic activity of alveolar macrophage was assessed
using fluorescent E. coli bioparticles by flow cytometry. Macrophages that had internalized MSC mitochondria (Mito1) showed a
significantly higher phagocytic index in comparison to those without (Mito-) (n 5 12, **, p 5 .003, Student’s t-test). This was
assessed by an increase in pHRodo median fluorescence intensity (MFI). (B) Isolated mitochondria taken from MitoRed-treated
MSC were added to human MDM and internalization was confirmed after 24 hours by flow cytometry. (C) In vitro addition of iso-
lated MSC mitochondrial fraction to E. coli infected MDM significantly reduced extracellular CFU counts (n 5 3 in triplicate, *,
p< .05, Student’s t-test) coupled with an increase in intracellular CFU (D). Abbreviations: MDM, monocyte-derived macrophages;
Mito, mitochondria.
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Figure 5. Inhibition of MSC tunneling nanotubes (TNT) formation by pretreatment with Cytochalasin B partially blocks mitochondrial
transfer differentially affecting MSC modulation of MDM. (A) Confocal microscopy demonstrates normal spindle-shape morphology of
MitoRed MSC (red) in coculture with MDM (CD451, blue), where TNT are present and mitochondrial transfer is evident (images were
taken at a magnification of 10 3 63; scale bar5 50 mm). Cytochalasin B (500 nM) pretreated MSC appear rounded and TNT are no lon-
ger visible, however mitochondrial transfer still takes place as shown by colocalization of staining. (B) Coculture of MDM with Cytochala-
sin B pretreated MSC resulted in approximately 50% abrogation in the MitoRed MFI of macrophages (*, p< .05, Mann-Whitney U test).
(C, D) Mitochondrial respiration of human macrophages and human MSC was measured as oxygen consumption rate (OCR) using the
SeaHorse technology. Macrophage mitochondrial function was analyzed during coculture with or without human MSC in the presence
or absence of Oligomycin, FCCP, and Rotenone/Antimycin A to differentiate ATP-linked respiration from proton leak. Coculture with
untreated but not Cytochalasin B pretreated MSC significantly enhanced MDM levels of mitochondrial basal respiration and mitochon-
drial ATP turnover (n 5 5–6, *, p< .05, Mann-Whitney U test). (E) MSC pretreated with Cytochalasin B significantly restored cell viability
of MDM post E. coli infection (***, p< .001 vs. MDM, ANOVA (Bonferroni)). (F) Both intact and Cytochalasin B pretreated MSC cocul-
ture significantly decreased LPS-induced TNF-a levels in culture medium (CM) (*, p< .05, **, p< .01, ***, p< .001 vs. MDM1LPS, **,
p< .05 vs. MDM, ANOVA (Bonferroni). (G) Extracellular E. coli CFU were significantly decreased in coculture with untreated but not
Cytochalasin B pretreated MSC compared to MDM alone (*, p< .05, **, p< .01 vs. MDM, ANOVA (Bonferroni)). Data shown as mean6
SD, n 5 3–4 in triplicate for each condition. Abbreviations: MDM, monocyte-derived macrophages; MFI, median fluorescence intensity;
MSC, mesenchymal stem cells.
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This would suggest that TNT mediate transfer only partially
and macrophages also acquire MSC mitochondria through cell
contact-independent mechanisms.

Cytochalasin B pretreatment of MSC resulted in a near
50% reduction in MitoRed mean fluorescence intensity (MFI)
in MDM as compared to MDM in coculture with untreated
MSC (9,3006 2,068 vs. 5,2406 2,643 MDM MitoRed MFI,
mean6 SD, p 5 .028) (Fig. 5B).

To further investigate if transferred mitochondria are func-
tional, we examined macrophage mitochondrial respiration
and mitochondrial ATP turnover using SeaHorse technology
[35]. Remarkably, coculture with MSC led to a significant and
robust increase in both MDM mitochondrial basal respiration
rate and mitochondrial ATP turnover as measured by oxygen
consumption rate (OCR). Coculture with Cytochalasin B pre-
treated MSC abrogated this effect (Fig. 5C, 5D), confirming
that TNT mediate transfer of functional mitochondria and that
this process can be blocked by Cytochalasin B pretreatment.

In coculture with MDM, Cytochalasin B pretreated MSC
were capable of rescuing MDM from E. coli-induced cell death

to a similar extent as nontreated MSC (50 and 40% respec-
tively) (Fig. 5E) and retained the significant capacity to sup-
press LPS-induced TNF-a secretion by MDM, although less
potently than untreated MSC (Fig. 5F). This provides addi-
tional proof that the secretory function of MSC was not sig-
nificantly affected by Cytochalasin B pretreatment. However,
Cytochalasin B pretreated MSC completely lost the capacity to
enhance bacterial clearance as seen with untreated MSC (Fig.
5G), indicating that partial abrogation of mitochondrial trans-
fer is responsible for the MSC effect on macrophage phagocy-
tosis in vitro.

Thus, mitochondrial transfer through TNT resulted in
improvement of MDM phagocytosis potentially through
enhancement of MDM mitochondrial function and ATP turn-
over. Importantly, by Cytochalasin B pretreatment we were
able to selectively block the effect of MSC on macrophage
phagocytosis and bioenergetics without compromising their
anti-inflammatory properties.

Partial Inhibition of Mitochondrial Transfer by

Prevention of TNT Formation in MSC Abrogates the

Antimicrobial Effect of MSC in E. coli Pneumonia

To extend this finding to an in vivo setting, we treated mice
with untreated, Cytochalasin B pretreated MSC and MSC iso-
lated mitochondria. Pretreatment of MSC with Cytochalasin B
completely abrogated the antimicrobial effect of MSC both in
the BALF and lung homogenate resulting in a nearly twofold
increase of E. coli CFU in the BALF, similar to the effect seen
with AM depletion (Figs. 1A, 6A, 6B). This would indicate the
importance of cell-contact-dependent mitochondrial transfer
for the antimicrobial effect of MSC in vivo. The antimicrobial
effect of MSC was not recapitulated by the administration of
MSC isolated mitochondria, suggesting that intact MSC are
required for efficient transfer of mitochondria which may
functionally integrate into the recipient cell in vivo.

Cell Contact-Independent Mitochondrial Transfer

Although TNT-mediated mitochondrial transfer was essential
for the MSC effect on phagocytosis both in vitro and in vivo,
we also explored the importance of exosome-mediated mito-
chondrial transfer. MSC were prelabeled with MitoTracker Red
and cocultured with human MDM at a 1/5 ratio in the Trans-
well noncontact coculture system. The higher MSC number
was implemented to compensate for the distance which the
exosomes would have to travel through the inserts to reach
the MDM. After 24 hours, 21.76 5.9% of macrophages had
acquired MSC mitochondria with coculture and this was
increased to 55.16 16.8% with the use of MSC conditioned
medium (Fig. 7A). This would suggest effective transfer albeit
less potent than the extent of transfer when cells were cocul-
tured in direct contact. Consistent with previous findings,
MSC in noncontact coculture significantly enhanced the pro-
portion of phagocytic macrophages when stimulated with LPS
as quantified using pHRodo particles (Fig. 7B), and phagocytic
macrophages which had internalized MSC mitochondria dem-
onstrated a higher phagocytic index than those without mito-
chondria (Fig. 7C).

Figure 6. Inhibition of tunneling nanotubes formation by MSC
abrogates the antimicrobial effect of MSC in E. coli pneumonia.
Pretreatment of MSC with Cytochalasin B inhibited the therapeu-
tic effect of MSC in bacterial clearance in the BALF (A) and lung
homogenate (B). Administration of the MSC mitochondrial frac-
tion did not significantly affect the bacterial burden in the BALF
compared to the PBS group (in BALF *, p< .05 MSC vs. PBS, Krus-
kal Wallis test, in lung homogenate *, p< .05 MSC vs. CytoB,
Kruskal Wallis test, PBS vs. MSC, Student’s t-test, n 5 3–5 mice
per group). Data shown as mean 6 SD for each condition. Abbre-
viations: BALF, broncho-alveolar lavage fluid; MSC, mesenchymal
stem cells.
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DISCUSSION

The main findings in this study are that (1) the antimicrobial
effect of MSC in a mouse model of E. coli-induced pneumonia
is dependent on alveolar macrophages; (2) MSC transfer their
mitochondria to macrophages both in vitro and in vivo; (3)

mitochondrial transfer from MSC to primary human MDM is
at least partially mediated through TNT-like structures; (4)
mitochondrial transfer from MSC to macrophages improves
macrophage mitochondrial function and ATP turnover in vitro

and enhances macrophage phagocytic capacity both in vitro

and in vivo and (5) TNT-mediated mitochondrial transfer from

Figure 7. Mitochondrial transfer from MSC to human MDM via noncontact dependent mechanism. MDM were cocultured with MSC-
CM or MSC (pretreated with MitoRed) in a Transwell system without cell contact for 24 hours in the presence of LPS. (A) The extent of
mitochondrial transfer to MDM was measured by flow cytometry (n 5 3–5/group, *, p< .05, **, p< .01, ***, p< .001, ANOVA (Bonfer-
roni)) (B) The MDM were also given pHRodo particles to quantify phagocytosis (n 5 5/group, *, p< .05, ANOVA (Bonferroni)). (C) Phago-
cytic MDM were divided into two groups, with and without internalization of MSC mitochondria, and their phagocytic indexes were
determined by median fluorescence intensity (MFI) (n 5 5/group *, p< .05, Student’s t-test). Abbreviations: CM, culture medium; MDM,
monocyte-derived macrophages; MSC, mesenchymal stem cells.
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MSC to alveolar macrophages is an important mechanism of
the antimicrobial effect of MSC in vivo.

AM are considered to play a prominent role in clearing
bacterial infections from the airspaces by phagocytosis of air-
borne microorganisms and by orchestrating inflammatory
responses. Although beneficial effects of MSC treatment in
animal models of E. coli pneumonia are well documented [7,
10, 20, 36] the role of AM as cellular mediators of the MSC
effect has not been directly addressed. Therefore, in this study
mice were depleted of AM by the IN instillation of
clodronate-containing liposomes before infection with E. coli

K1. AM depletion resulted in downregulation of levels of
major pro-inflammatory cytokines as well as decreased
recruitment of inflammatory cells (neutrophils and mono-
cytes) into the airspaces, associated with pronounced impair-
ment in bacterial clearance at 24 hours post infection.
Notably, the antimicrobial effect of MSC was completely abro-
gated with AM depletion (Fig. 1A). To test if the loss of the
MSC antimicrobial effect could be a consequence of compro-
mised neutrophil recruitment, we depleted mice of neutro-
phils and found that although neutrophil depletion resulted in
a significant increase in BALF bacterial burden, MSC treatment
partially abrogated this effect (Supporting Information Fig.
3A). Collectively, these findings suggest that AM but not neu-
trophils are essential for the antimicrobial effect of MSC in E.

coli pneumonia model.
One of the potential mechanisms by which MSC could

enhance bacterial clearance is to enhance host phagocytes
capacity to engulf and kill invading microorganisms. We have
reported previously that MSC improved phagocytic capacities
of peripheral blood monocytes in the model of P. aeruginosa

peritonitis [9] and also of AM in the model of E. coli-induced
pneumonia in the ex vivo perfused human lung preparation
[11]. These findings were further confirmed by Devaney et al.
[36], showing that the MSC beneficial effect in rat E. coli

pneumonia was associated with increased phagocytic activity
of monocytes and macrophages and also by Monsel et al.
[20], who demonstrated that MSC or MSC-derived microve-
sicles improved phagocytic capacity of primary human mono-
cytes. In agreement with these findings, our present work
demonstrates that MSC administration was associated with a
significantly increased number of phagocytic AM compared to
control mice (Fig. 2A). These data were further corroborated
in vitro, where coculture with MSC led to significant improve-
ment in the capacity of primary human MDM to eliminate
extracellular bacteria (Fig. 2B). Interestingly, Hall et al. [18]
reported that the antimicrobial effect of mouse MSC in the
cecal ligation and puncture sepsis model was mediated
through improvement of neutrophil phagocytosis, and neutro-
phil depletion was detrimental to the beneficial effects of
MSC. However, in our studies we were not able to detect any
differences in neutrophil phagocytosis with MSC [9], these
inconsistencies might be due to different models used by our
groups as well as differences in the functional properties of
human and mouse MSC.

It is generally considered that the secretion of paracrine
factors is one of the primary mechanisms of MSC effect [37].
Although in many studies it has been reported that MSC cell
products (conditioned medium or exosomes) were able to
recapitulate effect of the cells [20, 22, 23, 38–40], there are
also reports showing that the MSC secretome was not effec-

tive [36] or was not as effective as whole cell therapy [41],
suggesting a role for cell-contact-dependent mechanisms.
Direct cell-contact-dependent mitochondrial transfer from
MSC to lung epithelial and endothelial cells has been reported
as an important mechanism of MSC beneficial effects in sev-
eral preclinical animal models of lung diseases [20, 24–26].
The ability of MSC to transfer their mitochondria to innate
immune cells via cell-contact-dependent mechanisms has not
been studied yet. In our experiments, we found that MSC
possess a profound capacity to transfer their mitochondria to
macrophages both in vitro and in vivo (Fig. 3). Furthermore,
we visualized that transfer occurs through TNT-like structures
which are formed by MSC. TNT were first described by Rus-
tom et al. in 2004 [42] as a novel mechanism of cell-cell com-
munication. Since then numerous reports have demonstrated
that TNT facilitate the exchange of signaling molecules and
organelles, including mitochondria between connected cells
[43–46]. The TNT-mediated mechanism of mitochondrial trans-
fer from MSC to bronchial epithelial cells was shown to
account for MSC beneficial effects in preclinical models of
asthma and COPD [26]. Furthermore, Miro1 motor protein
has been shown to play critical role in mediating the transfer
along the actin fibres within TNT [25]. Islam et al., 2012 has
reported that for MSC mitochondrial donation to alveolar epi-
thelial cells, Connexin-43 based gap junctions between MSC
and recipient cells were required [24]. In our work however,
blocking Connexin-43 gap junction formation by GAP 26 had
no effect on the number of cell contacts between MSC-
derived TNT and macrophages or mitochondrial transfer rate.

Consistent with existing literature [23, 24, 26], we found
that TNT-mediated mitochondrial transfer augmented macro-
phage bioenergetics (basal respiration and mitochondria ATP
turnover) confirming that transferred mitochondria were func-
tional (Fig. 5C, 5D).

More significantly, we observed that AM that had
acquired MSC mitochondria display higher phagocytic activity
in vivo (Fig. 4A). To further test our hypothesis that mitochon-
dria donation will enhance phagocytic activity of macro-
phages, we isolated the mitochondrial fraction from MSC and
added it to macrophages in culture. Several reports have
shown that isolated mitochondria can be directly internalized
by cells, incorporated into the endogenous mitochondrial net-
work and contribute to changes in the bioenergetic profile as
well as functional properties of recipient cells, not only in

vitro but also in vivo [48, 49]. In our work, addition of the iso-
lated MSC mitochondrial fraction to macrophages in vitro sig-
nificantly improved their phagocytic activity similar to the
effect of MSC coculture (Fig. 4C, 4D). By flow cytometry we
observed internalization of exogenous mitochondria into the
macrophage (Fig. 4B).

The mechanism of internalization of the artificially isolated
mitochondria is as yet unknown. One could speculate that it
would differ from the process occurring when mitochondria
are being transferred naturally through TNT or exosomes and
that may result in different functional outcomes for the recipi-
ent cell. This represents one limitation for this method as a
gain of function approach to test the importance of MSC
mitochondria in this effect.

Interestingly, when MSC formation of TNT was inhibited by
Cytochalasin B, mitochondrial transfer was not abrogated com-
pletely, suggesting involvement of cell-contact independent

Jackson, Morrison, Doherty et al. 11

www.StemCells.com VC 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press



mechanisms most likely through microvesicle release by MSC
(Fig. 5A, 5B). We have shown that even when MSC and MDM
are cocultured without contact, MDM do acquire MSC mito-
chondria although to a substantially lesser extent than is
observed with direct cell contact. Again this transfer is associ-
ated with an increased phagocytic capacity (Fig. 7). The capacity
of MSC to release mitochondria–containing microvesicles has
already been reported by Islam et al. (24) and further corrobo-
rated by Phinney et al. (23), who demonstrated that MSC out-
source their partially depolarized mitochondria to macrophages
through secretion of extracellular vesicles which are being
engulfed by acceptor macrophages. This contributes to
improvement of macrophage bioenergetics whereas another
type of MSC shed exosomes simultaneously inhibiting macro-
phage activation by suppression of Toll-like receptor signaling.
This phenomenon may explain the capacity of MSC microve-
sicles to improve monocyte phagocytosis, shown by Monsel
et al. [20] and also provides an additional explanation for the
independence of the immunomodulatory effect of MSC on mac-
rophages from mitochondrial transfer donation that we see in
our study.

Finally, partial blockage of mitochondrial transfer by prein-
cubation of MSC with 500 nM Cytochalasin B resulted in com-
plete abrogation of the MSC effect on macrophage
bioenergetics and clearance of extracellular bacteria while not
affecting MSC pro-survival and anti-inflammatory properties in

vitro (Fig. 5). Importantly, mice which were treated with Cyto-
chalasin B pretreated MSC in vivo demonstrated significantly
higher (fivefold to tenfold) bacterial burden in the lungs
shown by BALF and lung homogenate E. coli CFU counts than
mice which received normal MSC (Fig. 6A, 6B), similar to the
effect seen with AM depletion (Fig. 1A). Of note, although we
observed that addition of the mitochondrial fraction isolated
from MSC to the macrophages in culture led to internalization
and improved phagocytosis in vitro, administration of isolated
mitochondria to mice in vivo did not have any effect on bac-
terial clearance (Fig. 6A). One possible explanation for that
would be that the dose required for this effect in vivo would
be different from the in vitro scenario. Also, we did not test
the distribution of these exogenous mitochondria in the lung,
it is possible that by IN route of administration mitochondria
are not distributed evenly but are concentrated in one small
area, which prevents their uptake by AM from distant alveoli
and the IV route of administration could be more beneficial.

A recently published paper by Braza et al. [50] reports
that in a house dust mite-induced asthma model MSC are
being phagocytosed by AM leading to an M2 phenotypic
switch and alleviation of inflammation. In the present study
we have tested the possibility of MSC phagocytosis by human
MDMs in vitro by real-time imaging and confocal microscopy
and did not detect any evidence of phagocytosis or cell fusion
up to 72 hours in coculture. It is possible that some apoptotic
MSC will be phagocytosed by AM in vivo thereby accounting
for some mitochondrial transfer, however the loss of MSC
antimicrobial effect after inhibition of TNT-like structures indi-
cates the importance of active mitochondrial transport rather
than passive phagocytosis for MSC modulation of AM in this
model.

There are limitations to this study. This study is focused
on the importance of MSC mitochondrial transfer to macro-
phages as a novel mechanism of the antimicrobial effect of
MSC in vivo. We do not report here the effect of the transfer
on other macrophage functions (e.g., cytokine and chemokine
secretion or polarization); this is the main subject of on-going
work. The question still remains about the mechanisms by
which MSC mitochondria facilitate macrophage phagocytosis.
Mitochondria are implicated in the synthesis of high-energy
phosphates, modulation of calcium stores, activation of signal-
ing pathways that impact cell fate as well as shuttling genetic
material. It is plausible that mitochondrial transfer replenishes
the ATP pool which is being quickly depleted by macrophages
during cytoskeletal rearrangements in the process of phagocy-
tosis. Although we have shown that mitochondrial transfer
augments macrophage bioenergetics, we have not demon-
strated that this is a direct cause for more active phagocyto-
sis; this will require more in depth investigation utilizing MSC
with dysfunctional mitochondria.

CONCLUSION

In conclusion, MSC transfer their mitochondria to macro-
phages both in vitro and in vivo. Mitochondrial donation
results in enhancement of macrophage phagocytosis poten-
tially through improvement in bioenergetics and presents a
novel mechanism of the antimicrobial effect of MSC in condi-
tions complicated by bacterial infections.
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